Although malaria has been eradicated in many countries, including the United States, it still infects more than 200 million people worldwide, killing nearly a million every year. In regions where malaria is endemic, people rely on preventive measures such as mosquito netting and insecticides. Existing drugs can help, but the malaria parasite is becoming resistant to many of them.
Scientists working to develop new drugs and vaccines hope to target the parasite in the earliest stages of an infection, when it quietly reproduces itself in the human liver.
In a major step toward that goal, a team led by MIT researchers has now developed a way to grow liver tissue that can support the liver stage of the life cycle of the two most common species of malaria, Plasmodium falciparum and Plasmodium vivax. This system could be used to test drugs and vaccines against both species, says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT.
Bhatia is the senior author of a paper describing the liver-tissue system in the July 17 issue of the journal Cell Host & Microbe. The paper’s lead author is Sandra March, a research scientist in Bhatia’s lab, and scientists from the Broad Institute, Sanaria Inc. and the University of Lisbon also contributed to the research.