Clients in the News – Princeton University Researchers Develop Laser Device May End Pin Pricks for Diabetics

The new monitor uses a laser, instead of blood sample, to read blood sugar levels. The laser is directed at the person’s palm, passes through skin cells and is partially absorbed by sugar molecules, allowing researchers to calculate the level of blood sugar. (Source: Princeton)

Princeton University researchers have developed a way to use a laser to measure people’s blood sugar, and, with more work to shrink the laser system to a portable size, the technique could allow diabetics to check their condition without pricking themselves to draw blood.

“We are working hard to turn engineering solutions into useful tools for people to use in their daily lives,” said Claire Gmachl, the Eugene Higgins Professor of Electrical Engineering and the project’s senior researcher. “With this work we hope to improve the lives of many diabetes sufferers who depend on frequent blood glucose monitoring.”

In an article in the journal Biomedical Optics Express, the researchers describe how they measured blood sugar by directing their specialized laser at a person’s palm. The laser passes through the skin cells, without causing damage, and is partially absorbed by the sugar molecules in the patient’s body. The researchers use the amount of absorption to measure the level of blood sugar.

Sabbir Liakat, the paper’s lead author, said the team was pleasantly surprised at the accuracy of the method. Glucose monitors are required to produce a blood-sugar reading within 20 percent of the patient’s actual level; even an early version of the system met that standard. The current version is 84 percent accurate, Liakat said.

“It works now but we are still trying to improve it,” said Liakat, a graduate student in electrical engineering.

When the team first started, the laser was an experimental setup that filled up a moderate-sized workbench. It also needed an elaborate cooling system to work. Gmachl said the researchers have solved the cooling problem, so the laser works at room temperature. The next step is to shrink it.

“This summer, we are working to get the system on a mobile platform to take it places such as clinics to get more measurements,” Liakat said. “We are looking for a larger dataset of measurements to work with.”

read more…

Comments are closed.