Scientists at Rice University are enhancing the natural antioxidant properties of an element found in a car’s catalytic converter to make it useful for medical applications.
Rice chemist Vicki Colvin led a team that created small, uniform spheres of cerium oxide and gave them a thin coating of fatty oleic acid to make them biocompatible. The researchers say their discovery has the potential to help treat traumatic brain injury, cardiac arrest and Alzheimer’s patients and can guard against radiation-induced side effects suffered by cancer patients.
Their nanoparticles also have potential to protect astronauts from long-term exposure to radiation in space and perhaps even slow the effects of aging, they reported.
The research appears in the American Chemical Society journal ACS Nano.
Cerium oxide nanocrystals have the ability to absorb and release oxygen ions— a chemical reaction known as reduction oxidation, or redox, for short. It’s the same process that allows catalytic converters in cars to absorb and eliminate pollutants.
The particles made at Rice are small enough to be injected into the bloodstream when organs need protection from oxidation, particularly after traumatic injuries, when damaging reactive oxygen species (ROS) increase dramatically.
The cerium particles go to work immediately, absorbing ROS free radicals, and they continue to work over time as the particles revert to their initial state, a process that remains a mystery, she says. The oxygen species released in the process “won’t be super reactive,” she says.