Clients in the News – Duke University Bioengineers Develop New Approach to Regenerate Back Discs

Share Item

Cell therapies may stop or reverse the pain and disability of degenerative disc disease and the loss of material between vertebrae, according to Duke University scientists.

The health conditions affect thousands of Americans. To use cell therapies, however, scientists have to keep the cells alive, synthesize the appropriate replacement material and get it to the right place in a patient’s spine. With newly made biomaterials from Duke’s Pratt School of Engineering, that goal could be closer.

In a proof-of-concept study published online in the journal Biomaterials, graduate student Aubrey Francisco and biomedical engineering professor Lori Setton describe a new biomaterial designed to deliver a booster shot of reparative cells to the nucleus pulposus, or NP — the jelly-like cushion naturally found between spinal discs. The NP tissue distributes pressure and provides spine mobility, helping to relieve back pain.

“Our primary goal was to create a material that would be liquid at the start, gel after injection in the disc space and keep the cells in the location where they’re needed,” Setton said. “Our second goal was to create a material that would provide the delivered cells with the environmental cues to promote their persistence and biosynthesis.”

Disc degeneration is a common problem as people age. Over time, the soft, compressible discs that work as the spine’s shock absorbers break down. Although this intervertebral disc degeneration can occur anywhere along the spine, it mainly happens near the neck and lower back, causing intense pain. Individuals with this condition can also develop herniated discs, osteoarthritis or spinal narrowing, known as spinal stenosis.

more…