Equipment Acquisition and Remarketing

BridgePath Scientific offers Equipment Acquisition and Remarketing

Clients in the News – University at Buffalo Studies Problems with Alzheimer’s protein can jam up traffic in the brain

Materials move smoothly through the brain cells of a fruit fly larvae (left). But when scientists reduced the levels of the protein presenilin and the enzyme GSK-3B present in the nerve, tiny organic bubbles called vesicles began moving in an uncoordinated fashion and became trapped (right).
Credit: Shermali Gunawardena

Scientists have known for some time that a protein called presenilin plays a role in Alzheimer’s disease, and a new study reveals one intriguing way this happens.

It has to do with how materials travel up and down brain cells, which are also called neurons.

In an Oct. 8 paper in Human Molecular Genetics, University at Buffalo researchers report that presenilin works with an enzyme called GSK-3ß to control how fast materials — like proteins needed for cell survival — move through the cells.

“If you have too much presenilin or too little, it disrupts the activity of GSK-3ß, and the transport of cargo along neurons becomes uncoordinated,” says lead researcher Shermali Gunawardena, PhD, an assistant professor of biological sciences at UB. “This can lead to dangerous blockages.”

More than 150 mutations of presenilin have been found in Alzheimer’s patients, and scientists have previously shown that the protein, when defective, can cause neuronal blockages by snipping another protein into pieces that accumulate in brain cells.

But this well-known mechanism isn’t the only way presenilin fuels disease, as Gunawardena’s new study shows.

“Our work elucidates how problems with presenilin could contribute to early problems observed in Alzheimer’s disease,” she says. “It highlights a potential pathway for early intervention through drugs — prior to neuronal loss and clinical manifestations of disease.”

read more…

Comments are closed.