Clients in the News – University of Washington assist in Great Ape Genetic Diversity Catalog

A model of great ape history during the past 15 million years has been fashioned through the study of genetic variation in a large panel of humans, chimpanzees, gorillas and orangutans. The catalog of great ape genetic diversity, the most comprehensive ever, elucidates the evolution and population histories of great apes from Africa and Indonesia. The resource will likely also aid in current and future conservation efforts which strive to preserve natural genetic diversity in populations.

More than 75 scientists and wildlife conservationists from around the world assisted the genetic analysis of 79 wild and captive-born great apes. They represent all six great ape species: chimpanzee, bonobo, Sumatran orangutan, Bornean orangutan, eastern gorilla, and western lowland gorilla, and seven subspecies. Nine human genomes were included in the sampling.

Javier Prado-Martinez, working with Tomas Marques-Bonet at the Universitat Pompeu Fabra in Barcelona, Spain, and Peter H. Sudmant, with Evan Eichler at the University of Washington in Seattle, led the project. The report appears today, July 3, in the journal Nature.

“The research provided us the deepest survey to date of great ape genetic diversity with evolutionary insights into the divergence and emergence of great-ape species,” noted Eichler, a UW professor of genome sciences and a Howard Hughes Medical Institute Investigator.

Genetic variation among great apes had been largely uncharted, due to the difficulty in obtaining genetic specimens from wild apes. Conservationists in many countries, some of them in dangerous or isolated locations, helped in this recent effort, and the research team credits them for the success of the project.

Sudmant, a UW graduate student in genome sciences, said, “Gathering this data is critical to understanding differences between great ape species, and separating aspects of the genetic code that distinguish humans from other primates.” Analysis of great ape genetic diversity is likely to reveal ways that natural selection, population growth and collapse, geographic isolation and migration, climate and geological changes, and other factors shaped primate evolution.

more…