Client in the News – Georgia Institute of Technology finds personalized medicine best way to treat cancer

Venn diagrams showing the unique, annotated genes identified as significantly differentially expressed in the group analysis and in the personalized analysis(es) of at least 1 patient (P1: Patient 1, P2: Patient 2, P3: Patient 3, P4: Patient 4).

If a driver is traveling to New York City, I-95 might be their route of choice. But they could also take I-78, I-87 or any number of alternate routes. Most cancers begin similarly, with many possible routes to the same disease. A new study found evidence that assessing the route to cancer on a case-by-case basis might make more sense than basing a patient’s cancer treatment on commonly disrupted genes and pathways.

The study found little or no overlap in the most prominent genetic malfunction associated with each individual patient’s disease compared to malfunctions shared among the group of cancer patients as a whole.

“This paper argues for the importance of personalized medicine, where we treat each person by looking for the etiology of the disease in patients individually,” said John McDonald, a professor in the School of Biology at the Georgia Institute of Technology in Atlanta. “The findings have ramifications on how we might best optimize cancer treatments as we enter the era of targeted gene therapy.”

The research was published February 11 online in the journal PANCREAS and was funded by the Georgia Tech Foundation and the St. Joseph’s Mercy Foundation.

In the study, researchers collected cancer and normal tissue samples from four patients with pancreatic cancer and also analyzed data from eight other pancreatic cancer patients that had been previously reported in the scientific literature by a separate research group.

McDonald’s team compiled a list of the most aberrantly expressed genes in the cancer tissues isolated from these patients relative to adjacent normal pancreatic tissue.

The study found that collectively 287 genes displayed significant differences in expression in the cancers vs normal tissues. Twenty-two cellular pathways were enriched in cancer samples, with more than half related to the body’s immune response. The researchers ran statistical analyses to determine if the genes most significantly abnormally expressed on an individual patient basis were the same as those identified as most abnormally expressed across the entire group of patients.

The researchers found that the molecular profile of each individual cancer patient was unique in terms of the most significantly disrupted genes and pathways.

“If you’re dealing with a disease like cancer that can be arrived at by multiple pathways, it makes sense that you’re not going to find that each patient has taken the same path,” McDonald said.

read more…