Clients in the News – Georgia Inst. of Tech Researchers Provide Real-Time 3-D Images from Inside the Heart and Blood Vessels

A single-chip catheter-based device that would provide forward-looking, real-time, three-dimensional imaging from inside the heart, coronary arteries and peripheral blood vessels is shown being tested. (Georgia Tech Photo: Rob Felt)

Researchers have developed the technology for a catheter-based device that would provide forward-looking, real-time, three-dimensional imaging from inside the heart, coronary arteries and peripheral blood vessels. With its volumetric imaging, the new device could better guide surgeons working in the heart, and potentially allow more of patients’ clogged arteries to be cleared without major surgery.

The device integrates ultrasound transducers with processing electronics on a single 1.4 millimeter silicon chip. On-chip processing of signals allows data from more than a hundred elements on the device to be transmitted using just 13 tiny cables, permitting it to easily travel through circuitous blood vessels. The forward-looking images produced by the device would provide significantly more information than existing cross-sectional ultrasound.

Researchers have developed and tested a prototype able to provide image data at 60 frames per second, and plan next to conduct animal studies that could lead to commercialization of the device.

“Our device will allow doctors to see the whole volume that is in front of them within a blood vessel,” said F. Levent Degertekin, a professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “This will give cardiologists the equivalent of a flashlight so they can see blockages ahead of them in occluded arteries. It has the potential for reducing the amount of surgery that must be done to clear these vessels.”

Details of the research were published online in the February 2014 issue of the journal IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. Research leading to the device development was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), part of the National Institutes of Health.

“If you’re a doctor, you want to see what is going on inside the arteries and inside the heart, but most of the devices being used for this today provide only cross-sectional images,” Degertekin explained. “If you have an artery that is totally blocked, for example, you need a system that tells you what’s in front of you. You need to see the front, back and sidewalls altogether. That kind of information is basically not available at this time.”

read more…